Convenient Solid-phase Synthesis of Benzothiazole Derivatives

Jing TANG¹, Lu Ling WU¹, Xian HUANG^{1, 2}*

¹Department of Chemisitry, ZhejiangUniversity , Xixi Campus, Hangzhou 310028 ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Abstract: Resin-bound cyclic malonic ester **1** reacted with aryl isothiocynate, then was treated with bromine, followed by cleavage from the resin under perchloric acid to give benzothiazoles **4**.

Keywords: Solid-phase, resin-bound cyclic malonic acid ester, benzothiazole derivires.

Meldrum's acid is a kind of versatile intermediate in organic synthesis and it is susceptible to nucleophilic attack at C-4 and C-6 along with the unique ring openning reaction which make it exhibit versatile reactivity¹. In view of this, we built up the resin-bound cyclic malonic ester². Meanwhile, the benzothiazole nucleus is of particular interest especially within the realm of medicinal chemistry³. Although there are many publications on the synthesis of benzothiazole derivatives in solution-phase⁴, there have been only a few reports on solid-phase synthesis of these compounds.

Inspired by the solution-phase strategy⁵, we report here the novel solid-phase synthesis of a series of substituted 2-methylbenzothiazoles *via* resin-bound cyclic malonic ester **1** conveniently. The synthetic route was outlined in **Scheme 1**.

Reagents and conditions: i (a) Et₃N, DMF, rt, 1 h. (b) R-C₆H₄NCS, 45 $^{\circ}$ C, 18 h. (c) 2mol/L HCl. ii) Br₂, AcOH, rt, 2 h. iii) HClO₄, CH₃CN, reflux, 4 h

Due to the high reactivity of the methylene of resin-bound cyclic malonic acid ester **1**, triethylamine was used to form the anion at room temperature for 1 hour, the formed

^{*} E-mail: huangx@mail.hz.zj.cn

Jing TANG et al.

anion reacted with the aryl isothiocyanates in dry dimethyl formamide at 45 °C, and subsequently treated with 2mol/L HCl to transform into resin 2. Excess reagents were removed by simple washing with the solvents (EtOH, CH_2Cl_2). Then resin 2 reacted with bromine at room temperature to give the corresponding resin 3. Resin 3 was treated with perchloric acid in refluxing CH_3CN , the expected product 4 was obtained cleanly in good yield and excellent purity (**Table 1**). The recovered resin 5 can be reused.

The procedures from resin 1 to final products were monitored by FT-IR. The resin 1 showed carbonyl peaks at 1767 cm⁻¹ and 1794 cm⁻¹, when the resin 1 was converted to the resin 2, the IR carbonyl peaks shifted to 1738 cm⁻¹ and 1684 cm⁻¹ respectively, with appearing the new peaks at 1545 cm⁻¹ (C=C) and 2552 cm⁻¹ (S-H). Disappearance of the peak at 2552 cm⁻¹ indicated complete transformation of the compound 2 to afford resin 3. After cleavage, the ketone resin 5 showed carbonyl peak at 1717 cm⁻¹ and it can be reused to form the resin-bound cyclic malonic ester 1.

Entry	Product	R	Yield ^a	Purity ^b
1	4a	Н	79	>95
2	4b	4-Cl	75	>95
3	4 c	4-CH ₃	80	>95
4	4d	6-CH ₃	82	>95
5	4e	6-Cl	81	>95
6	4f	6-Br	77	>95
7	4g	6-F	76	>95
8	4 a	Н	77	>95°

 Table 1
 Yields and purities of benzothiazoles^a

a. The crude yields were based on the loading of the cyclic malonic acid ester resin **1** b. Determined by ¹H NMR. c. The regenerated resin was used (the 3 rd run)

In summary, a novel and convenient method was achieved for the solid-phase synthesis of benzothiazole derivatives under the mild conditions. Moreover, the present strategy described the new traceless cleavage SPOS route.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (Project No. 20072032)

References

- (a) B. C. Chen, X. Huang, J. H. Wang, *Synthesis*, **1987**, 482. (b) B. C. Chen, X. Huang, S. M. Ma, *Synth. Commun.*, **1987**, *17*, 1519.
- 2. X. Huang, Z. X. Liu., Tetrahedron Lett., 2001, 42, 7655
- (a) M. G. Bock, R. M. Dipardo, B. E. Evans, K. E. Rittl, W. L. Whittner, D. F. Veber, P. S. Anderson, R. M. Freidiger, *J. Med. Chem.*, **1989**, *32* (13), 16. (b) D. Kantoci, E. D. Murray, D. D. quiggle, W. J. Wechter, *J. Med. Chem.*, **1996**, *39*, 1196.
- 4. L. L. Cheng, l. l. Yu, Y. L. Soo, Teterhedron lett., 2001, 42, 109.
- 5. M. Augustin, E. Guenther, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Naturwiss. Reihe. 1989, 38 (3), 27.

Received 20 September, 2002